ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq.

Tamanho: px
Começar a partir da página:

Download "ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq."

Transcrição

1 Notas sobre Funções de Green FMA 43 Prof. Luís Raul Weber Abramo Departamento de Física Matemática Instituto de Física USP Introdução geral às funções de Green A função de Green (G. Green, c. 828) é uma ecelente técnica para resolver equações diferenciais do tipo: ˆLψ() = f(), () onde ˆL é um operador diferencial de 2 a ordem. A idéia é que, em vez de resolver a Eq. (), nós resolvemos a equação: ˆLG(, ) = δ( ). (2) Se for possível encontrar a função de Green G(, ) que satisfaz a equação acima, então a solução da Eq. () é: ψ() = d G(, ) f( ). (3) Note que eistem innitas funções de Green que satisfazen a Eq. (2), já que sempre é possível adicionar uma função ψ h () a G(, ), onde ˆLψ h =, e G(, ) + ψ h () será também uma função de Green que satisfaz a Eq. (2). Isso faz com que possamos escolher a função de Green apropriada de acordo com a situação, de forma que a solução obedeça a qualquer condição de contorno. Você pode ter mais (muito mais) detalhes nas notas do Prof. João Barata. Funções de Green em eletrostática No Eletromagnetismo, a primeira função de Green que vocês devem ter encontrado apareceu na Eletrostática. Na verdade, como vocês sabem, o potencial no ponto devido a uma carga pontual num ponto é: φ q ( ) = Como o potencial acima é a solução da equação de Poisson: q 4πɛ. (4) 2 φ = ρ ɛ = q ɛ δ( ), (5)

2 2 isso signica que: ( 2 ) 4π = δ( ). (6) Ou seja, a função de Green para a equação de Poisson é /4π. Na verdade, essa é a função de Green que faz com que o potencial vá a zero quando r. Para outros problemas, com outras condições de contorno, você pode encontrar outras funções de Green. Funções de Green em Eletrodinâmica Quando há cargas e correntes em movimento, as Equações de Mawell (no calibre de Lorentz) adquirem a forma: φ(t, ) = A(t, ) = ( 2 c 2 ) 2 t 2 φ(t, ) = ρ(t, ), (7) ɛ ( 2 c 2 ) A(t, 2 t 2 ) = µ J(t, ). (8) O operador é conhecido como D'Alembertiano. Buscamos encontrar a função de Green que satistaz: G(t, ; t, ) = δ(t t )δ( ), (9) de forma que a solução de: ψ(t, ) = f(t, ) () seja dada por: ψ(t, ) = dt d 3 G(t, ; t, )f(t, ) () Vamos encontrar essa função de Green utilizando transformadas de Fourier. Ou seja: ψ(t, ) = ψ(ω, k) = dω d 3 k (2π) 4 eiωt e i k ψ(ω, k). (2) dt d 3 e iωt e i k ψ(t, ). (3) Fazendo a transformada de Fourier da Eq. () obtemos: ) ( k 2 + ω2 ψ c 2 = f ψ = f. (4) k 2 ω2 c 2 Agora, basta fazer a transformada inversa de Fourier para obter ψ(t, ) em termos de f(t, ). Portanto:

3 3 ψ(t, ) = = = dω d 3 k (2π) 4 eiωt e i k f(ω, k) (5) k 2 ω 2 /c 2 dω d 3 k (2π) 4 eiωt e i k k 2 ω 2 /c, dt d 3 e iωt e i k f(t, ). (6) 2 dω d dt d 3 f(t, 3 k ) (2π) 4 eiω(t t ) e i k ( ) k 2 ω 2 /c. (7) 2 Comparando esta última epressão com a Eq. (), notamos que a função de Green é dada pelos termos à direita do sinal, ou seja: G(t, ; t, ) = dω d 3 k (2π) 4 eiω(t t ) e i k ( ) k 2 ω 2 /c 2. (8) Para computar esta integral, é útil denir os intervalos de tempo e espaço, t = t t e =. Assim, podemos escrever: G(t, ; t, ) = (2π) 4 dω e iω t d 3 k e i k k 2 ω 2 /c 2. (9) Podemos escolher qualquer sistema de coordenadas que desejarmos na integral, em particular podemos escolher o eio de k z na direção de. Assim, temos: G(t, ; t, ) = (2π) 4 dω e iω t dkk 2 eik cos θ 2π d(cos θ) k 2 ω 2 /c 2 dϕ = (2π) 4 dω e iω t k 2 ( (2π) dk k 2 ω 2 /c 2 e ik e ik). (2) ik Simplicando a eponencial em termos de sen(k) e trocando a ordem das integrais em k e em ω obtemos: G( t; ) = c2 4π 3 dk k sen(k) dω e iω t ω 2 k 2 c 2. (2) A integral em ω pode ser resolvida pelo método dos resíduos. Eistem dois pólos no plano de ω compleo um em ω = kc e outro em ω = kc. A integral acima depende, portanto, de como fechamos o contorno nesse plano compleo para incluir um, dois, ou nenhum dos dois pólos (é claro que, se a escolha fôr tal que nenhum pólo cai dentro do contorno, a integral se anula). Algumas opções de contornos possíveis são mostradas na gura. Muitas outras escolhas podem ser feitas além dessas duas mostradas na gura: você poderia escolher incluir o pólo da direita mas não o da esquerda; ou você poderia escolher incluir o da esquerda e não o da direita; você poderia até escolher uma combinação linear dessas duas escolhas! Essa liberdade na escolha do contorno, e quais resíduos portanto vão determinar a integral, é uma consequência da liberdade que temos para escolher qual função de Green queremos. Lembre-se

4 4 Im(ω) Im(ω) Re(ω) Re(ω) Figura : No painel da esquerda, se o contorno é fechado por cima os pólos são incluídos e a nossa integral é dada pela soma dos resíduos; se o contorno é fechado por baio, a integral dá zero. Já no painel da direita, é o inverso que ocorre. que eistem innitas funções de Green, e a nossa escolha deve se pautar pelas condições de contorno ou outros argumentos de natureza física. Eu vou economizar algumas páginas de cálculos e dizer para vocês que a escolha apropriada para problemas que envolvem radiação de ondas eletromagnéticas é a escolha do painel esquerdo da Fig.. Essa escolha leva à função de Green retardada que nós discutimos em sala de aula. Note que, para que a integral possa ser fechada por cima é necessário que, na Eq. (2), iω t quando Im(ω) +. Em outras palavras: para a nossa escolha de incluir ambos os pólos, é preciso que t >. Se t < então o contorno deve ser fechado por baio, nenhum dos pólos é contido no contorno e a integral dá zero. Ou seja: G( t; ) = c2 4π 3 dk k sen(k) θ( t) 2πi Tomando ambos os resíduos, em ω = ±kc, obtemos: e iω t (ω ω j ) ω 2 k 2 c 2. (22) res ω j G( t; ) = c2 θ( t) 2π 2 i = c θ( t) 2π 2 dk k sen(k) 2 sen(kc t) 2kc ( e ik e ik ) ( e ikc t e ikc t ) dk 2i 2i (23). (24) Agora, basta usar o fato de que o integrando é uma função par de k, e que: dk e ik = 2π δ(), (25)

5 5 e o resultado é que: G( t; ) = c θ( t) 4π [δ( + c t) δ( c t)]. (26) Devido à função-degrau θ( t), apenas a segunda função δ pode ser diferente de zero, o que nos dá o resultado nal: G( t; ) = θ( t) 4π δ[t (t /c)]. (27) O argumento da função δ pode ser escrito em termos do tempo retardado t R = t /c. O termo /c é o tempo que um sinal que caminha à velocidade da luz leva para ir do ponto até o ponto. Um observador no ponto, no instante t, vê portanto um sinal que foi emitido no ponto no instante t R. O que equivale dizer: um sinal emitido no instante t, no ponto, chega no ponto no tempo t = t + /c. É a função de Green retardada que nos dá a noção de causalidade, de uma ordem na natureza (no caso, na natureza do Eletromagnetismo) que determina que causas têm que vir antes dos efeitos. Essa propriedade causal do Eletromagnetismo foi depois etendida para toda a Física, e levou à Teoria da Relatividade Especial de Einstein, em 95. Para nalizar, vamos escrever a solução nal para as ondas no nosso campo ψ em termos da fonte e da função de Green retardada. De () temos: ψ(t, ) = dt d 3 4π δ[t t R ] f(t, ) = d 3 f(t R, ), 4π Note que eu suprimi a função θ nessas últimas epressões, porque de fato ele é redundante a condição de que t > é sempre satisfeita no caso que estamos considerando. Eu z a última integral, em dt, apenas para mostrar como o nosso resultado nal se relaciona com outros resultados do Eletromagnetismo, que podem ser mais familiares. Se pusermos o potencial elétrico φ em vez de ψ, e ρ/ɛ no lugar de f, obtemos simplesmente a solução conhecida da eletrostática. Mas note que agora a densidade de carga não é a instantânea (em t), mas aquela num instante anterior, t R = t /c.

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ Apêndice N Solução Geral da Equação de Ondas Eletromagnéticas No caso geral em que há presença de densidades de cargas ρ e correntes j, vimos que os potenciais eletromagnéticos φ, A satisfazem as Eqs.

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

Radiação de cargas em movimento. Carlos Alexandre Wuensche Processos Radiativos I

Radiação de cargas em movimento. Carlos Alexandre Wuensche Processos Radiativos I Radiação de cargas em movimento Carlos Alexandre Wuensche Processos Radiativos I 1 1 Roadmap!!!!!! Uma boa discussão das derivações dessa aula podem ser encontradas no cap. 14 do livro Classical Electrodynamics

Leia mais

Eletromagnetismo II. 5 a Aula. Professor Alvaro Vannucci. nucci

Eletromagnetismo II. 5 a Aula. Professor Alvaro Vannucci. nucci Eletromagnetismo II 5 a Aula Professor Alvaro Vannucci nucci Na aula passada, das Equações de Maxwell,, vimos: 1 o ) Conservação de Energia n da = S S ( E H ) ˆ (Vetor de Poynting) 1 + + H B E D V dv t

Leia mais

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5)

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Eletromagnetismo I Prof. Dr..M.O Galvão - 2 emestre 204 Preparo: Diego Oliveira Aula 2 Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Como visto no curso de Física Básica, o campo

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

Lista de Exercícios 5

Lista de Exercícios 5 FFI5 Física-Matemática II Lista de Eercícios 5 Seja Φ a distribuição definida por Φ[f] := f (n) (a), n N, a R, onde f representa uma função teste qualquer e f (n) (a) sua n-ésima derivada calculada em

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2 Eletromagnetismo I Prof. Dr. R.M.O Galvão - 1 Semestre 2015 Preparo: Diego Oliveira Aula 2 Na aula passada recordamos as equações de Maxwell e as condições de contorno que os campos D, E, B e H devem satisfazer

Leia mais

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017 Física - 4323203 Escola Politécnica - 2017 GABARTO DA PR 27 de julho de 2017 Questão 1 A superfície matemática fechada S no formato de um cubo de lado a mostrada na figura está numa região do espaço onde

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4 Eletromagnetismo I Prof. Ricardo Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 4 Equações de Maxwell O livro texto inicia a apresentação de Eletromagnetismo pela Eletrostática. No entanto, antes

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 06 Respostas esperadas Parte Estas são sugestões de possíveis respostas. Outras possibilidades também podem ser consideradas

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

O TEOREMA DE POYNTING E CONSERVAÇÃO DA ENERGIA

O TEOREMA DE POYNTING E CONSERVAÇÃO DA ENERGIA TE053-Ondas Eletromagnéticas O TEOREMA DE POYNTING E CONSERVAÇÃO DA ENERGIA PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Equações de Maxwell, Força

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 10

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 10 Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 215 Preparo: Diego Oliveira Aula 1 Nas duas aulas passadas nós derivamos as expressões para os potenciais escalar e vetor devido a fontes variáveis

Leia mais

CÁLCULO VETORIAL E NÚMEROS COMPLEXOS

CÁLCULO VETORIAL E NÚMEROS COMPLEXOS TE053-Ondas Eletromagnéticas CÁLCULO VETORIAL E NÚMEROS COMPLEXOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Noções gerais e notação Gradiente, Divergente

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais retardados e dipolo de Hertz (Introdução) (Capítulo 11 Páginas 395a 400) (Capítulo 14 Páginas 511

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 214 Preparo: Diego Oliveira Aula 26 Transformada de Fourier da Equação de Onda Nós vimos que, em uma dimensão, a equação de onda é dada por 2 A i

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

Universidade de São Paulo Eletromagnetismo ( ) Prova 1

Universidade de São Paulo Eletromagnetismo ( ) Prova 1 Instituto de Física de São Carlos Universidade de São Paulo Eletromagnetismo 760001) 3 de abril de 018 Prof. D. Boito Mon.:. Carvalho 1 sem. 018: Bacharelados em Física Nome e sobrenome: n. USP: Prova

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1 Turma A Questão : (3,5 pontos) Instituto de Matemática e Estatística da USP MAT455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 03-0//03 (a) Determine a solução y da equação

Leia mais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Prof. Alex G. Dias Prof. Alysson F. Ferrari Integrando Campos vetoriais Você já viu que, diferentemente de campos escalares, campos

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Soluções para flutuações prescritas do escoamento Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Flutuações no escoamento Anteriormente assumimos o escoamento não

Leia mais

Campo Escalar Complexo

Campo Escalar Complexo Finalmente consideremos: Teoria Quântica de Campos I 60 operador na representação de Schödinger, basta partir de 59.2 e usar lembrando que: É uma superposição de vários estados de uma partícula (cada um

Leia mais

Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico

Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico André Juan Ferreira Martins de Moraes Resumo Estas notas se baseiam na Seção 1.1 do artigo 1, na qual as equações

Leia mais

h (1 cos θ) onde, m e é a massa do elétron, θ é o ângulo pelo qual a direção do fóton muda λ 1 é o comprimento de onda do fóton antes do espalhamento,

h (1 cos θ) onde, m e é a massa do elétron, θ é o ângulo pelo qual a direção do fóton muda λ 1 é o comprimento de onda do fóton antes do espalhamento, Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 09/06/2014 Nome do Candidato: Nível: Mestrado Doutorado 1. A função de

Leia mais

Variáveis Dinâmicas e Operadores

Variáveis Dinâmicas e Operadores Variáveis Dinâmicas e Operadores Variável Dinâmica é qualquer função de x e p: K = p2 2m U = U(x) E = p2 2m + U(x) L = r p Só estudamos sistemas conservativos em MQ. Qual o valor de ω(x, p) (uma VD qualquer)

Leia mais

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico A lei de Coulomb Fundamentos da Eletrostática Aula 5 A Lei de Coulomb e o Campo Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Conforme mencionamos anteriormente, trataremos neste curso de distribuções

Leia mais

ELETRICIDADE E ELETROMAGNETISMO

ELETRICIDADE E ELETROMAGNETISMO PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR ELETRICIDADE E ELETROMAGNETISMO QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) t: Tempo

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 4 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA

POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA TE053-Ondas Eletromagnéticas POTENCIAIS ELETROMAGNÉTICOS E TEORIA DA RADIAÇÃO ELETROMAGNÉTICA PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Potenciais

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

Notas de aula - Espaço Tempo

Notas de aula - Espaço Tempo Notas de aula - Espaço Tempo Prof. Ronaldo Carlotto Batista 5 de abril de 019 1 Revisão da Mecânica Newtoniana Quantidade elementares: posição: r t) = x t), y t), z t)) velocidade: v = d dt r momento linear

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES

EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES Na disciplina de Análise Matemática, em geral no final do segundo semestre do primeiro ano dos cursos de licenciatura em Economia, Gestão e Engenharia, é usual

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Capítulo 11 Ondas Eletromagnéticas 11.1 Equação de Onda Mecânica: Corda Considere um pulso de onda que se propaga em uma corda esticada com extremidades fixas. Podemos obter a equação de ondas nesse caso

Leia mais

Exame Unificado EUF. 1º Semestre/2013 Parte 1 16/10/2012

Exame Unificado EUF. 1º Semestre/2013 Parte 1 16/10/2012 Exame Unificado das Pós-graduações em Física EUF 1º Semestre/2013 Parte 1 16/10/2012 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

O poço quadrado finito

O poço quadrado finito O poço quadrado infinito FNC375N: ista 8 5//4. Um próton se encontra num poço infinito de largura. Compute a energia do estado fundamental para (a), nm, o tamanho aproximado de uma molécula, e (b) fm,

Leia mais

Aula 6. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 6. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - Semestre 14 Preparo: Diego Oliveira Aula 6 Na aula passada derivamos a expressão do potencial produzido por uma distribuição de cargas φ( r) = 1 4πɛ ρ( r ) r

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Critérios de correção Parte Como entender os critérios de correção. 1. O valor total de cada questão é 1 ponto.. As questões

Leia mais

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana Ondas transversas: pulsos numa corda, mola, etc. Ondas longitudinais: mola, som, etc. Diferentes tipos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas

Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO Preciso avisar que muitas imagens dessa lição são tortas e nada profissionais. O fato é que foi eu quem as desenhei e por motivos de tempo (e preguiça) resolvi coloca-las aqui. Esse não

Leia mais

Fis-26 Lista 06 Resolução

Fis-26 Lista 06 Resolução Fis-6 Lista 6 Resolução João Paulo de Andrade Dantas Questão 1. V φ = gλ π K = π λ V φ = g K Sendo esta a velocidade de fase, podemos definir, para cada K, uma frequência ω tal que: V φ = ω K Igualando-se

Leia mais

Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira. Aula 14

Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira. Aula 14 Eletromagnetismo I Prof. Dr. R.M.O Galvão - Semestre 014 Preparo: Diego Oliveira Aula 14 Campo Magnético de uma Espira de Corrente Um exemplo de cálculo do campo magnético é o de uma espira de corrente,

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da

Leia mais

Capítulo 8 Equações Diferenciais Parciais

Capítulo 8 Equações Diferenciais Parciais Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.

Leia mais

Data Dia Tópico Demonstrações

Data Dia Tópico Demonstrações 2016: 44 dias de aula + 3 provas = 47 dias Data Dia Tópico Demonstrações 1/8 2a 1. Introdução ao curso; revisão de identidades vetoriais 3/8 4a 2. Função delta de Dirac em 1, 2 e 3 dimensões Demonstração:

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 015 Preparo: Diego Oliveira Aula 3 Equação da Onda e Meios Condutores Vamos considerar a equação de onda para casos em que existam correntes de condução

Leia mais

Aula 4. Leandro Farina Janeiro de 2007 / Petrópolis

Aula 4. Leandro Farina Janeiro de 2007 / Petrópolis Aula 4 Leandro Farina (farina@mat.ufrgs.br) Janeiro de 2007 / Petrópolis Linhas Gerais 1 2 Linhas Gerais 1 2 O Minicurso Capítulos. 1 em Água Hipóteses da água Equações, condições de contorno,... Primeiras

Leia mais

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens Fundamentos da Eletrostática Aula 3 Descontinuidades no Campo Elétrico & Método das Imagens Prof. Alex G. Dias Prof. Alysson F. Ferrari Descontinuidades no campo elétrico Uma observação a ser feita uando

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019 Física III - 43303 Escola Politécnica - 019 GABARITO DA P3 13 de junho de 019 Questão 1 Considere um fio infinito transportando uma corrente elétrica I(t = I 0 cos(ωt ao longo do eixo x e uma espira quadrada

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1 Teoria de Bandas 1 Elétrons Livres CF086 - Introdução a Física do Estado Sólido 1 Introdução Para iniciar a investigação da contribuição eletrônica para as propriedades físicas relevantes, vamos considerar

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

Física estatística. Teoria cinética dos gases MEFT, IST

Física estatística. Teoria cinética dos gases MEFT, IST Física estatística Teoria cinética dos gases MEFT, IST Life is a series of collisions with the future; it is not the sum of what we have been, but what we yearn to be. Jose Ortega y Gasset (1883-1955)

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

A equação de onda com fonte

A equação de onda com fonte A equação de onda om fonte Na postagem, Invariânia de alibre ou gauge, vimos que podemos esolher o alibre de Lorentz e resolver a mesma equação de onda om fonte para as três omponentes do potenial vetorial

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I

Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I 1 1 Transformações de Lorentz e cinemática relativística Postulados da relatividade especial As leis da natureza são as

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 3 7 DE MAIO DE 27 A = 2 2 2 A matriz tem como valor próprio λ = 2 (triplo. Para os vectores próprios: { z = y + z = v = A matriz não é diagonalizável,

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-0 AERODINÂMICA NÃO ESTACIONÁRIA Soluções para movimentos prescritos de um aerofólio Prof. Roberto GIL Email: gil@ita.br Ramal: 648 1 Admitância Indicial Ao se aplicar uma entrada degrau a um sistema

Leia mais

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda:

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda: Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 03/08/2011 Nome do Candidato: Nível: Mestrado Doutorado 1. No cálculo da

Leia mais

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 55 - Mecânica Clássica Prof. Iberê L. Caldas Terceiro Estudo Dirigido o semestre de 18 Os estudos dirigidos podem ser realizados em duplas. Apenas os exercícios marcados com asteriscos precisam ser

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 5

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 5 Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 015 Preparo: Diego Oliveira Aula 5 Teoria de Ondas Guiadas Até agora temos estudado somente ondas que se propagam em todo o espaço, sem limitações,

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 4. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/1 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 4 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/1 A pressão

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Ondas e Óptica 2008 Universidade de Coimbra Notas Soltas

Ondas e Óptica 2008 Universidade de Coimbra Notas Soltas Ondas e Óptica 008 Universidade de Coimbra Notas Soltas 1 grupos de ondas Vamos fazer esta discussão a uma dimensão por ser mais simples e isso não representar perda de generalidade da argumentação utilizada.

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Campo Magnético - Lei de Lenz

Campo Magnético - Lei de Lenz Campo Magnético - Lei de Lenz Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula passada vimos como uma variação do fluxo de campo magnético é capaz de provocar uma fem induzida. Hoje continuamos

Leia mais

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci Eletromagnetismo II 4 a Aula Professor Alvaro Vannucci nucci Na aula passada vimos... Potência MédiaM dia (Circuito RLC) P 0 = ω = 1 I 0ε0 cos Ressonância: 1 LC θ Fator de Qualidade: Fator de Potência

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. Sala 5017 E Aula 4

Microondas I. Prof. Fernando Massa Fernandes.   Sala 5017 E Aula 4 Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fermassa@lee.uerj.br Aula 4 1 Conceitos fundamentais Equações de Maxwell (MKS) Revisão E = B t M (1) (2) H = D t + J

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais